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. ABSTRACT

In the present research, 3 hybrid stress multilayer warping quadri-
lateral element with a traction-free edge (TFQE), based on the Principle
of Modified Complementary Energy, has been developed for efficient finite
element modeling and analysis at and near free edges. The assumed stress
distributions in the element were selected so as to satisfy the basic
equations of equilibrium; sufficient detail was implemented throughout
each layer of each element to model the steep boundary layer stress
gradients, including the important interlaminar stresses. The interlayer
stress continuity and traction-free conditions at the free edge are
satisfied exactly; the resulting stress distribution was examined for
consistency as required by 3-dimensional stress functions. The stress
assumption includes no singularity. The traction-free edge is allowed to
warp freely.

The interior of the laminate, away from the free edge, is modeled by
laminated-plate elements (MLP3K) which are based on lamination theory.
These elements include transverse shear deformation and are compatible with
the TFQE. Thus, numerical results for general free-edge multilayer plate
problems are obtained with efficient lamination-theory element modeling of
most of the structure, while TFQE elements provide additional warping
degrees of freedom at and near the free edges where the warping effect
is important. This method of analysis has been developed for both static
(mechanical and thermal loading) and transient response analyses.

Several examples, for which other numerical solutions exist, have
been solved by using the TFQE and/or the TFQE in combination with MLP3K
elements. The results compare well, but a significant reduction in the
number of unknowns of the equations has been achieved in the present
TFQE solution. ;

Finally, some numerical methods for solving static and transient
response equations have been reviewed.
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SECTION 1

INTRODUCTION

1.1 Brief State of the Art Review on Traction-Free Edge Effects Studies

Composite materials are often used in missile and aircraft structures.
They have high strength-to-weight ratios and, hence, from that viewpoint
form good structural materials for plate and shell structures. However,
at traction-free edges, laminates tend to develop large interfacial
stresses. Further, methods for predicting these stresses accurately and
efficiently are not yet available. A basic understanding of and a means
of predicting these stresses accurately is sought in the present study.
Two classical problems as described in the following can be used to study
this interlaminar stress behavior.

The first is a 4-ply (0/90)s coupon under tension (Fig. 1) with
uniform strain Ex imposed over each end face. The solution [l]*, neglect-
ing loaded-end effects, is independent of x. The stresses are uniform in
the interior of the laminate, but rapid changes occur in a "boundary

layer" near the free edge as shown in Fig. 2. As indicated schematically

in Fig. 3 for individual plies, the interfacial normal stress oz balances
the moment arising from oy on the 0° ply and oy on the 90° ply. Thus, a
normal stress oy induces the interlaminar (a) normal stress 0z and (b)
shear stress Tyz at and near the free edge. The o! stress at such
locations is usually the more critical.

The second classical problem is an angle-ply coupon (:ﬁS)' in tension
as depicted also in Fig. 1. Similarly, neglecting loaded-end effects, the
solution is independent of x. The stresses [1,2] are again uniform in
the interior of the laminate and rapid changes occur in a "boundary layer"
near the free edge as shown in Fig. 4. For equilibrium at the +45/-45
interface (Fig. 5), the interlaminar shear stress sz balances Tx . Here,

an inplane shear stress Txy induces a significant Txa at and near the free

L]
Numbers in square brackets [ ] denote references which appear in the
reference list at the end of the text.
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edge. In both coupons even though ex is constant, the normal stress ox
varies rapidly along y near the free edge as shown in Refs. 1 and 2.

In a general laminate problem, importantly large inplane stresses oy
and Txy occur near the free edge, and these induce all three interlaminar

stresses oz. T _, and sz. When az is tension, these stresses can cause

ply delaminatizz [3,4). These twc classical problems have been solved by
many researchers using a variety of approximate methods. The methods
employed, the results obtained, and the attributes and limitations of
those approaches are reviewed in the following paragraphs.

The earliest solution was by Puppo and Evensen [2). They solved the
(1_45)8 coupon problem by modeling the bond between the plies of a laminate
with a finite isotropic layer to produce equivalent interlaminate shear
stiffness and, thus, averaged the shear stresses Tyz and sz at ply inter-
faces. In this method it is assumed that ozEO and,; hence, this approach
cannot be used to solve the (0/90)s laminate problem.

Finite-difference solutions of both problems were obtained by Pipes
and Pagano (1,5]). The solutions for the stresses 0z and sz at the
free edge are not shown even for very fine meshes and, hence, these
stresses may be singular at this location. The number of unknowns from
the resulting equations was about 1200.

Bogy [6].using Airy's stress function analyzed edge-bonded, dissimilar
isotropic wedges and found singular stress distributions of type r-u at
the interface, where r is the "radial distance" measured from the inter-
section of the interface with the free edge. The power term a in his
solution depends on the ratios of the two shear moduli and of the two
Poisson ratios. This analysis has not yet been extended to orthotropic
materials. However, in real laminates, the material is two-phase (resin
and fiber), and a gradual transition of material properties occurs between
plies. Thus, a two-phase modeling of composites may avoid such singulari-
ties as found in the problem analyzed in Ref. 6.

Rybicki (7] analyzed both problems with three-dimensional finite
elements based on the Principle of Complementary Energy. Rybicki modeled
only the upper symmetrical half of the laminate and consequently had to

solve for 492 unknowns. The interlaminar stresses at the loaded-ends




are of interest and a detailed discussion of these can be found in
Ref. 4.

Wang and Crossman [8] modeled typical cross sections of both coupons
with constant-strain triangular finite elements. To achieve an accurate
prediction of the rapidly-varying boundary layer stresses, they used 1€
elements through the thickness of each ply near the free edge, with a
total of 196 elements for each ply. Thus, even simple cases require a
large number of elements in this procedure.

Pagano [9] applied a higher order plate theory derived by Whitney and
Sun [10] to determine the interlaminar normal stress B in the (0/90)s
laminate depicted in Fig. 1. The solution correlates quite well with the
finite-difference results of Pipes and Pagano [5]. However, the theory’
violates interlaminar stress continuity; hence, the solution for Tyz is
poor.

By using Reissner's Principle [11], Pagano [12] developed an approxi-
mate theory for laminated composites. By making assumptions of z varia-
tions of the stresses, the equations are reduced to two independent
variables: x and y. The unknowns are seven generalized displacements
and six stresses for each ply or layer; each ply can be modeled by several
sublayers for improved accuracy. Using this theory, he solved both of the
aforementioned classical examples [13]. However, the resulting equations
are coupled partial differential equations, and the boundary conditions
involve a combination of various derivatives. Hence, such equations would
be difficult to solve for general problems.

Tang [14,15] applied boundary layer theory to solve the classical
examples cited in Fig. 1. Based on the proof by Friedrichs and Dressler
[16] for isotropic plates, Tang constrains the six stresses and three
displacements as either odd or even in each ply. This procedure in each
ply is questionable because the solution does not satisfy interply stress
continuity. Tang also applied this approach to the analysis of a circular
cutout in an infinite plate in tension [17], and a simply-supported
uniformly-loaded plate [18].
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Wang [19] using 3-D finite elements based on a modified form of

Reissner's Principle [l1]), analyzed both coupon problems. His solutions
compare well with the finite-difference solution of Pipes [1]. In this
method the traction conditions at the free edge and at layer interfaces
are satisfied exactly either analytically or by the use of Lagrange multi-
pliers similar to the method developed by Mau and Witmer [20].

Rybicki and Schmueser [21] analyzed a tension-loaded laminated plate
with a circular hole. Taking advantage of symmetry, they modeled an
eighth of the plate with 36 three-dimensional finite elements. This mesh
is rather crude, but the analysis provides a qualitative picture of the
solution.

In classical elasticity, the solution of a tension-loaded isotropic
plate with a circular hole is based on the theory of generalized plane
stress. However, when the thickness of the plate is of the same order as
the diameter of the hole, the deviation from the plane-stress assumption
is significant. Alblas [22]) analyzed the three-dimensional stresses for
this problem by using complex eigenfunctions [23]) but the analysis is
restricted to special problems. Green [24] also analyzed the same problem
by assuming the stresses to be expressible by series in sines and cosines.

The above methods have been applied to solve a very restricted class
of problems. The numerical procedures (finite difference and finite
element) are limited by computer storage; also, the approximate methods
employed are difficult to apply to more general problems which may involve
complex edge geometries and loading. Thus, an efficient solution proce-
dure is needed for the stress analysis of laminates to provide accurate
predictions of important interlaminar stresses which can occur at and near
free edges.

1.2 Outline of the Present Investigation

In the present research, a multilayer warping element with a traction-
free edge as depicted in Fig. 6 is developed for finite element modeling
at free surfaces; this element is termed the traction-free quadrilateral
element (TFQE). The element is based on the Principle of Modified
Complementary Energy ([25)% in which the requirements of interelement

+

An alternate formulation is also possible by modifying certain surface
integrals in the Principle of Modified Complementary Energy; see page 7
of Ref. 48 for details. 4




traction compatibility and applied boundary traction compatibility are
relaxed; that is, these interelement conditions are satisfied in an
integral sense by the use of Lagrange multipliers. The free boundary is
finely modeled with inplane degrees of freedom, u and v, at each ply face,
and a quadratic distributinon of w through the thickness. This is necessary
because the large interlaminar stresses produce cross-sectional warping.
However, these stresses decay rapidly (in a boundary-layer length which is
of the order of a laminate thickness, 2H); hence, away from the free edge,
the boundary is simply modeled by five degrees of freedom at each of its
two nodal stations.

The stresses are assumed in terms of polynomials with unknown
coefficients (B) and they satisfy the equations of equilibrium exactly.
Since rapid gradients occur normal to the free edge, the stress along y
is interpolated with polynomials up to degree four. Tangentially along
the free edge (x-axis), the stresses are assumed to vary linearly. The
stress assumption includes no singularities.

Previous investigations by Mau and Witmer ([20] and Wang (9] included
interlayer traction continuity in the formulation by the use of Lagrange
multipliers. However, this leads to several additional matrix manipula-
tions and also doubles the storage needed for the element. Hence, the
interlayer traction continuity is enforced analytically in the present
study.

To analyze a laminate in regions not including the free edge, its
interior is modeled by laminated plate elements [26] which are based on
lamination theory. These elements (named MLP3K) include transverse shear
deformation and are compatible with the free edge element (TFQE). Thus,
numerical results for general free-edge problems are obtained with an
efficient lamination-theory element modeling of most of the structure,
while TFQE elements provide additional warping degrees-of-freedom at and
near the free edges where the warping effect is important. The analysis
is developed for both static and dynamic problems under mechanical and
thermal loading. The traction-free quadrilateral element (TFQE) is tested
for accuracy and efficiency by comparing predictions obtained from its use

with existing numerical solutions.




SECTION 2

OBSERVATIONS ON ASSUMED-DISPLACENENT ELEMENTS

2.1 Objectives

Since the assumed-displacement element is widely used for structural

analysis, the consequences of its use in terms of efficiency and accuracy
are examined in the following for the analysis of “free-edge" problems.

A representative _oiqht-nodo quadrilateral assumed-displacement element
(QUAD8) , is used to analyze the (0/90)' couypon in tension as depicted in
Fig. 1. The QUAD8 element [27]) is based on a biquadratic assumed displace-
ment field (i.e., stresses are fully bilinear with some quadratic terms);
a schematic of the QUADS element with its node points is given in Fig. 7a.
Three uniform meshes are used to analyze this coupon problem: (a) 176
elements with 1178 degrees of freedom, (b) 224 elements with 1490 degrees
of freedom (see Fig. 7b), and (c) 320 elements with 2114 degrees of
freedom. The midplane interlaminar normal stress solution (0‘ vs. y/b

at z=0) were found to be converged for all three meshes. However,

serious stress violations occur in all three meshes at the 0/90 interface
near the free edge. The inaccuracies in the solution will be illustrated
by plots for Mesh (b) to show the limitations of QUAD8 which is represen-
tative of assumed-displacement elements.

2.2 Formulation Review

The general stress-strain relation for orthotropic material is [28)

<

Cu C,‘ 0 o Cu En
C-u C-u 0 o C.u ﬁ’
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66 6 & 2
Ca & O 0 g | ¥y (2.1)




where the material properties Cij are defined with respect to the element
X,Y.2 axes -- not the material axes of a ply. However, because of the
particular orientations of the plies (Fig. 1), the coupling shear stiffness
coefficients vanish in every layer; that is,

: . . . (2.2)
bt C Ve D

In such cases, the displacement field can be assumed to be ([9]:

w=-§¢ X (2.3a)
v o-(y,z) (2.3b)
we b(y,2) (2.3¢c)

From Eqs. 2.1, 2.2, and 2.3:
Yaxz - Xx, « Ty-Tue.o (2.4)

The stress-strain relations for the bidirectional laminate then reduce to:

[ o ] P e WF Y,
%5 SRR Y N ¢ ey
% 3 % 5w R €
LT’. EY - Cu‘ _YV'-‘ (2.5)

The potential energy functional for a bidirectional laminate with
zero body forces and applied tractions is

‘Tp-ff/(-/—(u', w g, ) av (2.6)
v

where the strain energy ) per unit volume is [28):
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The first term in Eq. 2.7 is a constant whose contribution vanishes
when one evaluates the variation of np. The second and third terms
generate the element nodal forces and the stiffness matrix, respectively.
The displacement field in each element is quadratic and is written as

v (7’1) v (2.8a)

W = ﬁ. (7,1) Lu"' (2.8b)

(l.'zl,')

pi(y.z) = biquadratic shape functions* [29,30]

where

W, = nodal-displacement degrees of freedom in
directions y and z, respectively

The element stiffness and force matrices are obtained by substituting
Egs. 2.8 into Eq. 2.7 and integrating over the element volume, as
discussed in Ref. 27.

2.3 Finite Element Mesh and Material Properties
Since the problem is symmetric about both the y and z axes (Fig. 1),

only a quadrant of the cross section is analyzed. Three uniform meshes

were investigated to assess convergence:

(a) 8 elements along 2 and 22 elements along y (total of 176
elements with 1178 degrees of freedom).

*
These very lengthy expressions are not included in this report but may
be found in Refs. 29 and 30.




(b) 8 elements along z and 28 elements along y (total of 224
elements with 1490 degrees of freedom).

(c) 8 elements along z and 40 elements along y (total of 320
elements with 2114 degrees of frwedom).

The differences in the solutions obtained from the three meshes were
negligible. Hence, only the results from Mesh (b) will be presented. This
mesh and the nomenclature are shown in Fig. 7.

Of particular interest in the present case are elements 212, 213,
220, and 221 which contain the 0/90 interface near the free edge. Stress
plots of this region will be presented subsequently with respect to the
auxiliary coordinate y, which measures inward from the free edge.

The ply properties represent a typical high strength graphite/epoxy
material:

5 < AR
ELx Qe x /0 P“ffr .[’_aalx/o paa
GLr.l G'Ll = Gr‘ «a0.85 /0 p“

V 2V =2V =2 0-2
LY L2 Tz

where L, T and 2z refer, respectively, to the longitudinal, transverse,
and thickness directions of the ply.

2.4 Results

A plot of o. at the symmetry plane z=0 is shown in Fig. 8. The
solution agrees well with the finite element analysis of Wang and
Crossman [8], and an analysis based on Reissner's Principle by Pagano (11).
However, such a limited comparison can lead to an erroneous conclusion
about the accuracy of the finite element solution at other locations in
the laminate.

In formulating displacement elements, traction continuity conditions
at interelement boundaries and traction-free conditions at free edges




are not enforced. Hence, when the displacement-field gradients in the
structure exceed the gradient capability of the finite-element interpola-

tion polynomials, serious local violations of these conditions can occur.
In the present solution, inaccuracies exist at the 0/90 interface (z=h)

near the free edge (y=b or ;-0).
At z=h, the normal stress oz is plotted along the interface in Fig. 9.

Serious errors in stress continuity occur at and near the free edge.
Similarly, the shear stress Tyz is plotted at z=h in Fig. 10. Here, not
only is stress continuity violated, but also the traction-free condition,
Tyzso at ;-O, is violated in element 221. In Fig. 11, the in-plane normal
stress oy is plotted at various locations through the laminate thickness.

Serious errors in the traction-free condition oy-O at ;—0, occur at the
0/90 interface (note, however, that °y does not have to be continuous
across the 0/90 interface). Finally, Fig. 12 shows plots of Oz through
the laminate thickness at the free edge. Each line segment between two
dots represents the stress distribution in one element. The curve is
discontinuous because of interelement traction continuity violations.

It is apparent that serious traction violations occur in the vicini;y
.of the 0/90 interface. Uncritical acceptance of these results would
indicate that a "maximum" in 0, occurs at z=0.75h. Similar distributions
were obtained for Meshes (a) and (c).

2.5 Discussion and Conclusions

A (0/90)s coupon in tension is analyzed using eight-node quadrilateral

, assumed-displacement elements. The distribution of oz vs. y at the mid-
Plane agrees well with existing numerical solutions. However, such a
limited comparison can lead to an erroneous conclusion about the accuracy
of the whole finite element solution because serious violations of trac-
tion continuity and traction-free conditions exist. These errors occur
when the displacement-field gradients in the structure exceed the ability
of the element interpolation polynomials to follow the solution. One
possible remedy is to refine the mesh locally, but this increases the
unknowns in the model, which is already quite large (1490 degrees-of-
freedom). Also, complex mesh generation is required.

10




In their analysis, Wang and Crossman [8] predicted that o, occurs
at z=h, y=b. 1In the present assumed-displacement analysis, O maXoccurs
at z=0.75h, y=b. However, such maxima cannot be taken seriously in view
of the many deficiencies present in the assumed-displacement finite-
element models and solution. :

Thus, it appears that assumed displacement elements are quite
inefficient for analyzing the behavior at and near free edges in compo-
sites. The critical stress gradients cannot be accommodated in an element
without increasing its degrees of freedom rather drastically; however, in
hybrid stress elements, this can be done efficiently. Hence, a hybrid
stress, multilayer, warping plate element with a traction-free edge has
been developed for composite plates and shells in the present study and
is described next in Sections 3 and 4.

11




SECTION 3

REVIEW OF THE HYBRID STRESS FINITE ELEMENT FORMULATION

In order to satisfy explicitly and exactly the zero-~tress conditions

on the free edge of a multilayer structure+, it is useful for constructing

a finite element analysis to use a variational principle in which condi~
tions on this free-edge bounding surface are accounted for explicitly
and separately from the (many) other terms which involve (a) the (interior)
volume of the element, (b) element bounding surfaces having non-prescribed
tractions, and (c) element boundary surfaces with non~zero prescribed
tractions. A variational principle which provides these features and
attributes is the Principle of Modified Complementary Energy ([25]; this
principle is employed as described in Subsection 3.1 for the finite element
analysis of mechanically- and thermally-loaded structures under static
conditions.

To include inertial forces in a dynamic analysis, it is convenient
to employ the modified Hellinger-Reissner Variational Principle (20,31,32]
as described in Subsection 3.2.

i tute

For clarity, only the general formulation of the finite element
equations is outlined in Subsections 3.1 and 3.2. The implementation
details in terms of specific finite element descriptions are given in
Section 4. ;

3.1 Static Analysis
3.1.1 Formulation

The Principle of Modified Complementary Energy (25] for a continuum
which is to be modeled by a total of N finite elements may be written as

el Un
+fT7 U ds -ff'u' al:]
% 8 (3.1)

+'rhis is essential if accurate stresses at and near the free edge of a
multilayer laminate are to be predicted from a finite-element analysis.
12




where

tQ

17

3

a1

The governing finite element equations are obtained from the condition

stress tensor

thermal strain (from known temperature change AT
and given thermal expansion coefficient data)
material elasticity matrix relating strains to
stresses

boundary traction

displacement vector (note that this quantity
appears in Eq. 3.1 only along the boundary (not
in the interior of the element); the star super-

script means that the displacement is on the

-

boundagx*)
prescribed boundary traction

volume of the nth element
entire boundary surface of the nth element

portion of avn on which tractions (non-gzero
or zero) are prescribed
the nth element of the N elements which are

used to model the structural continuum

that the variation of m__ shall be zero: &n =0,
mc mc

The stresses 0 appearing in Eq. 3.1 pertain to the interior volume

Vn of the element n and can be written as

+Lator. displacements in the interior are denoted by u.

13
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where the E are unknown parameters and the E are appropriate spatial
interpolation functions such that gg satisfies equilibrium and traction
conditions (see Subsection 4.2 for details); both gtgt and gogo are
functions of the unknown thermal loading. The term gogo is the equivalent

thermal stress obtained from the known Eo(x,y,z,t) and the stress-strain

relations. The term PtBt is chosen such that equilibrium and traction con-
ditions are satisfied for any given POBo (see Subsection 4.3 for details).+
The boundary tractions T pertain only to the boundary avn (including

So ) == not to the interior volume vn -- and may be expressed from Eq. 3.2
n

and the direction cosines of the boundary as:

T-RA+R.B,-R A, (3.3)

where R, Rt' and R.o are the interpolation functions given by Eq. 3.2 but
evaluated at the traction-boundary locations. If there are no tempera-
ture changes, both Btgt and §°§° are gzero.

The boundary displacements u* may be interpolated in terms of the
nodal generalized-displacement degrees-of-freedom q (see Subsection 4.5.2)
as: :

:LZ’

(3.49)

where, as indicated Fig. 6, the q have been selected at convenient
locations cn_the boundary of the element.

Substituting Egs. 3.2, 3.3, and 3.4 into Eq. 3.1, one obtains
(constants are omitted since they vanish under variation):

(3.5)

*Note that one could assume the stresses (Eq. 3.2) as 0 = PR. However,
this approach could be restrictive if one has a more general prescribed
€ distribution than that assumed in PB (see p. 43 of Ref. 20).
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where

. -éf'gf dv (3.6)
- ;v;,g'g ds (3.7
Hoa[P's P, dv (3.8)
Un
ng-{@:é ds (3.9)
G, ;*5:1; ds (3.10)
QH = érft# = applied mechanical generalized traction
S, loads (3.11)

Since the _B, are independent for each element, they can be eliminated in
terms of the q by setting

87';“: AE.M— S/e’fd”mg S?/ =0 (3.12a)
e 4y
om

In particular, —FES = 0 for each element separately; this yields:

-1 ]
/éaHgi/-H feét (3.12p)

— e
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Substituting Eq. 3.12b into Eq. 3.5, one obtains

’Lc'Z[;?Té?'Z’rQr’?reN] (3.13)

Ne)

where
L ALY
_é :Q L‘/ Q = element stiffness matrix, (3.14)
ol ol T T
8,64 -’-'t’fg*é- /éo'gh Ae (3.15)

™ generalized thermal loads vector for the element

and gu is given by Eq. 3.11.

Next, let the element property descriptions which are now expressed
in terms of local element coordinates x,y,z and local element generalized
displacements q be described with respect to the same global reference
coordinates X,Y,2 and global element generalized displacement q* by the
usual geometric transformation matrix ? [(30]:

L3
-7
.Z/ ~h 2/, . (3.16)
Accordingly, Eq. 3.13 becomes
N r
o7 g *7 @ + ¢ (3.17)
m= - -
SN LN SN AT NN

* r
A,‘ e 7 ,&‘J,; = element global stiffness matrix
»

r
th' I,‘ Q’n = global thermal loads vector

(3.17a)

16




* T
@, = 7 @ = global mechanical loads vector (3.17a
~~k ~a My,

concluded)

Finally, let the structure be represented by N finite elements which are
joined to each other compatibly along interelement boundaries. 1In
particular, let that compatibility be expressed in terms of compatibility
of the generalized global nodal displacements g* defined at the inter-
element boundaries. Then setting Gnmc-o for the complete assembled
discretized structure gives
L{z/fl(_l_gf/-l-' -F )=o (3.18)

~ M e~

Since the 8q* are independent and arbitrary, one obtains the following
algebraic equations of static equilibrium for the complete assembled
discretized structure:

*
KY'=F +F Lt
~ e o~ ~7T

where the assembled stiffness K and force matrices FH and FT are found

from assembling the Eq. 3.17a element global contributions:

l'/:
-~

N

(3.19a)

1
x'h
“
1
*.
|
)
1
'
|
{
e

"
W
ea—
o‘
{
29 &
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3.1.2 Solution Procedure

For static analysis the algebraic equilibrium equations of the
structure (Eq. 3.19) can be written as

’52{* .: ¥ (3.20)

where F= F + F

The stiffness matrix K is banded, symmetric, and positive-definite. The
"direct" method for solving Eq. 3.20 is to compute K-l and to obtain the
displacements q* as

* -
grw & L (3.21)

However, this procedure is inefficient and hazardous numerically because
5-1 is fully populated and, therefore, requires more storage than K.

An alternate scheme is the triple-factorization and sequential
solution method (see pp. 162-167 of Ref. 33 or pp. 3-1l1 through 3-17 of
Ref. 34). Th;s method is also called the Gauss-Doolittle decomposition
with sequential solution (see pp. 21-22 of Ref. 29) and consists of two

major steps:

i 1 The global stiffness matrix is factored into a triple product
(triple factorization or Gauss-Doolittle decomposition).

2. The displacements are solved for sequentially, in three sub-
steps.

The global stiffness matrix K is factored into the form:
T (3.22)

K=LDL

— D P~ o~

+

where L is a lower triangular matrix with zeros in it's upper triangular

portion and unity on the diagonal, and D is a pure diagonal matrix.

+Note that L in Eq. 3.22 is totally different from the interpolation
function L defined in Eq. 3.4.

18
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By direct substitution and comparison, one can show readily that

M| 2
XK. —;, L.., 2, (3.22a)
and
M=)
al e
L.'.. 1[kzm ;' L{, an Df] (3.22b)

Note that for m=1l, there are no summation terms. By the use of Eq. 3.22,

Eq. 3.20 may be rewritten as

L

L2LY-F (3.23
Next, let
L R =F
. (3.24)
where
ReDL " (3.24a)
Solving Eq. 3.24 for R, one obtains by forward solution
R M- R
-] £ - YA (3.25)
m L..“ [ﬁ\ ’Z" M’ ’ ]
Next, rewrite Eq. 3.24a as
2L=L (3.26)
where
i 3/'=,f (3.26a)
19




Solving Eq. 3.26, one finds

ka4 (3.27)
=
P=D R= .
— —~ —~ '
[}
Finally, Eq. 3.26a is solved.by backward substitution to obtain:
*
ARNN
Lan
"
& il P ¥ ]
%-o -L“_,._' [7‘" Luu-: A
* * o (3.28)
2 I S sl ]
?/‘ b L, [,; L-ll 14 3/9/3 LA,o %
Sequentially,

this "computing and storing" process involves (a) solving
Eq. 3.24 for 5 and replacing f by 5, (b) solving Eq. 3.26 for g and
replacing 5 by ?,v and (c) solving Eq. 3.26a for g' and replacing P by g'.

Thus, by this Pprocedure, g' is obtained without computing .5-1. The
method does not require any additional space, but less computing time is
required when compared with the "direct" method. For more details on
factoring and sequential solving, see Ref. 34.

3.2 Dynamic Analysis

3.2.1 Formulation
==L.o SOIrmulation

For dynamic analysis an appropriate hybrid functional may be obtained

from the Modified Hellinger-Reissner Principle [20,31,32]; the associated

functional "HHR in tensor notation with (initial) known thermal strain co

ij
included is

20




TR

-4 P&,‘. tl‘-]alV-—fT‘.(u.‘--u:> as (3.29)

AV

-[7 u dsf dt
5‘1

where the structure (continuum) has a known configuration at times t. and

tz, and
°ij -
ui -
u;l -
ijke
p =
Ti -
Ti =
v =
n
v_ =
n
SO =
n
Eo .
ij
{ - =

Let the boundary

as

e iy

1

stress tensor

element interior displacement field
element boundary displacement field
material elastic properties matrix
‘material mass per unit volume
boundary traction

prescribed boundary traction

volume of the nth element

boundary surface of the nth element

portion of 3vn on which tractions are prescribed

known thermal (initial) strain

time
tractions, Ti' be expressed in terms of the stresses Ui j
T = o, Y on  V
L Y h
(3.30)
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where vj is the direction cosine on the element's boundary. Then using

the Divergence Theorem, one of the integrals in Eq. 3.29 can be written

‘i{%fg (“’i,' +u.- )alV fT‘: u; ols

dVa (3.31)

e .. av
«g:tz,a '

Substituting th:l.s into Eq. 3.29, one obtains a modified principle T

mop’
"> .[Z- {f[ Skt Tae é‘d o b SR

®
-1 Pu u.i]d V+fT£ u; os

dVn

5/ als} dt

Also, let the stress field within each element satisfy the homogeneous
portion of the equilibrium equations; that is,

(3.32)

T, j=0 (3.33)
Then Eq. 3.32 can be written in matrix form as
N
befS] [Figss -sle-g pia]dv
: i (3.34)

* -' -+
+fjg ds- Ig.d } dt
dv,
where "DMC denotes the dynamic modified complementary energy principle.
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Note that Eq. 3.34 is the dynamic equivalent of Eq. 3.1 for "mc' The
kinetic energy term yields the mass matrix. Note that the velocity field
is obtained from the interior displacement field which need not be
compatible with the boundary displacements as can be seen from an inspec-
tion of Eq. 3.29 or Eq. 3.34. The interior displacement and velocity
field may be written as (see Subsection 4.5.3 for details):

u-=Ny (3.35)
G ~ni

<

where
= nodal degrees-of-freedom

= spatial interpolation functions

1Z uQ

Substituting the velocity matrix into the kinetic energy expression, the
mass matrix is given by

b i[ ’/gfg dV (3.36)
This procedure is not fully consistent with the hybrid-stress model
because the hybrid stress model requires that the stresses satisfy the
equilibrium equations; however, for dynamic analysis, the equations.contain
an inhomogeneous part caused by the inertia terms. Since only the
homogeneous part (Eq. 3.33) has been satisfied in the present formulation,
the mass matrix has been termed a "hybrid semi-rational"” mass matrix;

similar mass matrices have been employed in Refs. 20 and 35 with encourag-
ing success. :

Utilizing Eq. 3.35 and the geometric transformation matrix Sn given
by Eq. 3.16 to relate local to global element generalized nodal displace-
ments g* and velocities é* as well, one can show that the element mass
matrix E; referred to the element's nodal global generalized velocities

: é; is
¢ 7
il e (3.37)
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Finally, imposing global generalized nodal displacement compatibility,
setting G"nnc'o' integrating by parts with respect to time, and imposing
the requirements that 63* at t, and t, must be zero, one obtains the
following ordinary differential equations of dynamic equilibrium:

o 2
= ’ (3038)
where analogously the assembled mass matrix is
SRS T
!&,‘
M = e (3.38a)
o~

o
o)

L

and initial conditions (at t=0 or subscript "o") q* and é* are given.
LH 3

3.2.2 Solution Procedure

For present purposes, it is assumed that only (1) prescribed
transient externally-applied mechanical loads are applied and/or (2) tran-
sient temperature distributions throughout the volume of the structure
are prescribed. Further, the temperature levels are assumed to be such
that they do not affect the mechanical properties of the material. Also,
there is no thermo-mechanical coupling in the sense that structural
dynamic response does not influence the temperature distribution whereas
the independently-determined transient temperatures can influence the
stresses and transient mechanical response of the structure.

If transient externally-applied mechanical loads and/or thermal loads
were applied to the system, one could predict the resulting transient re-
sponse by one of two well-known methods. The first involves the use of normal
modes which permits one to replace Eq. 3.38 by a set of single degree-of-
freedom (DOF) equations of motion each of which can be solved exactly in
closed form for given transient generalized modal loading by the use of
the Duhamel superposition integral. However, one must first find the

24

e it i i e B




natural mode shapes and frequencies embedded in the homogeneous version
i of Eq. 3.38 in order to obtain the normal-mode equations of motion. This
was the procedure which was adopted, for example, in Ref. 35; hence, its
description is not repeated here.

The second method involves the direct timewise numerical integration
of Eq. 3.38 by the use of an appropriate finite-difference time operator.
This is a more direct method; however, only approximate solutions at a
discrete sequence of time instants can be obtained. In practice, the
solution errors (a) always consist of phase distortion and (b) may also

arise from false damping (positive or negative) introduced by the finite-

difference time operator itself. Further, the time increment size At may
be limited by roundoff-error instability properties of the operator;
operators of the explicit type always exhibit this behavior, and the At
size must be restricted accordingly. On the other hand timewise finite
difference operators of the implicit type do not exhibit roundoff error
instability and hence this effect does not limit the size of the allowable
At. However, all of these implicit (and explicit) operators produce
predictions with phase distortion which becomes increasingly severe as
one utilizes a larger and larger At. Also, many but not all of these
implicit operators exhibit false damping.

The properties of many timewise finite-difference operators have
been reviewed, for example, in Refs. 36-38 for application to linear
transient response problems such as represented by Eq. 3.38. For

application to linear mutli-DOF systems, let it suffice to note that the

Newmark B-method [39] with B=1/4 is generally regarded as being the most
useful of the available implicit operators since it (a) is unconditionally
stable, (b) exhibits no false damping, and (c) displays less phase distor-
tion than the other available implicit methods. Since this method was

used to obtain the transient response predictions shown in Subsection 5.2,

its essentials are reviewed briefly in the following.
For this purpose consider equations of motion of the following form

for linear transient response analysis:

‘e 2 ‘
My +kqy = F (3.39)
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which is similar to Eq. 3.38. Let this equation be solved in small equal
increments At(=d) of time by the use of the Newmark-f finite-difference
time operator expressed by ([39]:

7'/ . fi/» *[i 9.4 j/w] ol where d = At (3.40a)

~ne

.?’au'j/ﬁ*j’nd *[('f"e)i/;*ﬁi/.»n oL’ (3.40b)

where subscripts n and n+l denote quantities at time instants t and tn+1;
also () means differentiation with respect to time. At time t-O, let

it be assumed that %, and go are given. Note that one can also write
expressions similar to Eqs. 3.40a and 3.40b to represent L Ly L
and 41" By so doing, then applying the results to write Eq. 3.39 at
time instants tn+1’ tn' and tn-l' and carrying out eliminations, the

following “"explicit" recurrence equation [40] can be obtained:
(0+Fu"k) 4, = (3= (-2 )oK ) 2,
'(ﬁ +/g"l:,/5 ) 3.’,.-;
+/3d‘(fw,+ (} iy )fn f‘fn-/

(3.41)

A starting procedure may be obtained in a similar fashion [40] and reads

» R X #*
89 -7 o+ QY Lo F + RF, (3.42)

] o~ ~ 0 ~|

Note that B in Eg. 3.40b is totally different from the stress paraneters
B defined in Eq. 3.2.




an-!+8¢2§ Qv = aM

P = M-(3 - BraK R = a’1(3 - B)
I = unit matrix

qo = known generalized displacements at t=0
éo = known generalized velocities at t=0

With q, now known from Eq. 3.42, one can write Eq. 3.41 at n=1 to obtain:

(‘_M_’Heo(“/j)?‘ =(-'l£!-(l-9-/3)d"_/5 ) v,
-(ﬁ*’éd‘i’s ) i

+/3d‘(ja+ (ﬁ“)f,*f.) /

One can then solve Eq. 3.43 for q, since all else is known. Next, proceed

(3.43)

similarly to compute Q3r Qgqr *°+ for as many time steps as desired.

To choose an appropriate time increment size At(=d) a rough rule-of-
thumb is to provide about 20 time increments for the period of the highest
significantly responding mode of the syst:m, if known. An alternate
selection might be to choose At to be a/wmax where W is the highest
frequency of the mathematical model of the structure (homogeneous form
of Eq. 3.39) and a is some number like 200 to 400 perhaps =-- presuming
that the principal structural response involves roughly the lowest 20 to
50 percent of the normal modes of the structure.

Observe that Eq. 3.43 at any time instant "n" can be written in the

form:
»*
= A
é z/a, ~n (3.44)
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Also, note that Eq. 3.44 is of the same form as Eq. 3.29 in Subsection
3.1.2. Thus, instead of computing B*-l, the triple-factorization and
sequential solution method is used to obtain q,- If the matrix B* does

not change with time, the factored form at the first time step can be
used at all of the remaining steps.
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SECTION 4

FORMULATION FOR THE HYBRID STRESS MULTILAYER QUADRILATERAL
FINITE ELEMENT WITH ONE TRACTION-FREE EDGE

4.1 General Considerations
As indicated in the discussion in Sections 1 and 2, it is desirable

from the standpoints of stress-prediction accuracy and efficiency to base
a finite element analysis of multilayer laminated thin plates upon a Modi-
fied Principle of Complementary Energy (MPCE). Finite elements based upon
that variational principle are called hybrid-stress elements and have been
shown to be superior for predicting displacements in static loading prob-
lems to either assumed-displacement or assumed-stress finite elements [41].
For finite-element structural analysis involving static mechanical
and/or thermal loading, one can utilize the MPCE function “mc given by
Eq. 3.1. An examination of this equation reveals that for a finite-
element analysis, one needs to devise: (a) an appropriate assumed-stress
distribution throughout the volume of each element and (b) an appropriate
assumed displacement field only along the side boundaries A to B, B to D,
D to E, and E to A as identified, for example, in Fig. 6. This approach
has been employed successfully for the analysis of multilayer laminated
plates and has been reported, for example, in Refs. 20, 26, and 35. Those
previous studies, however, did not include a detailed examination of the
often-very-critical stresses which occur at and near the free edge of a
multilayer laminated composite structure. Hence, the present study
focusses chiefly upon an accurate finite-element prediction of these
"critical stresses" at and near a traction-free edge. Accordingly, a
special finite element called the traction-free edge quadrilateral element
(TFQE) as depicted in Fig. 6 has been constructed to provide "fine detail
information" at and near its traction-free edge AB, and to be compatible
at its opposite edge DE with the MLP3K multilayer element of Ref. 26.
The hope is that the use of the TFQE element only along the traction-free
edge(s) together with another element such as MLP3K (or other similar
elements) will provide the analyst with accurate and efficient predictions
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of stresses at all critical locations in the multilayer laminated plate
structure. Accordingly, for the TFQE depicted in Fig. 6, appropriate
assumed-stress distributions have been devised as described next in
Subsection 4.2. A description of the prescribed or initial (thermal)
stresses is given in Subsection 4.3, while interlayer continuity condi-
tions and the free-surface conditions on the two surfaces at z=+H are
discussed in Subsection 4.4. The selected assumed-displacement distribu-
tions along the edge boundaries of the TFQE are discussed in Subsection
4.5.2.

For dynamic response problems, the presence of inertia forces
throughout the volume of the material must be taken into account. An

approximate means for achieving this in a variationally-based finite
element analysis of the present (hybrid) type has been indicated in
Subsection 3.2 where a modification of the Hellinger-Reissner Variational
DMC functional, Eq. 3.34, with inertia effects
included. As Eq. 3.34 shows, for a finite element analysis one must

Principle resulted in a T

construct an assumed displacement field throughout the volume of the
element (see Subsection 4.5.3) as well as independently along the edges
of the element as in the static formulation given by Eq. 3.1; also, an
assumed streés distribution throughout the volume of the element is
required and remains the same for the dynamic as in the static case.
Finally, Subsection 4.6 is devoted to describing the resulting

behavioral features of preliminary and subsequent versions of the TFQE.
In particular, in hybrid-stress formulations, one often encounters
"kinematic modes" [26,42); procedures for their identification and
elimination are discussed briefly. However, an evaluation of the stress-
prediction accuracy and etticiency provided by the TFQE is deferred to
Section 5.

4.2 Assumed Stress Distribution

4.2,1 Selection Guidelines
If the TFQE were to provide accurate and efficient predictions of

interlaminar normal and shear stresses at and near a traction-free edge,
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its assumed-stress distribution should be comprehensive enough to permit
representing very closely the rapid variations of each of these stresses
at each interface as a function of distance y (see Fig. 6) from the free
edge. Some guidance in this regard is available from the coupon-problem
whose features were examined and discussed in Subsection 1.1; as a minimum
therefore, the stress-distribution assumptions of the TFQE should be
capable of representing those observed stress distributions faithfully.
Other more complex problems may exhibit more severely changing stresses
than revealed by the available pertinent examples discussed in Section 1.
Thus, more general and comprehensive guidance in selecting assumed-stress
distributions throughout the volume of the TFQE is desired.

Some assistance in this respect may be gained by examining well-known
three-dimensional stress function formulations, and their implications for
a sequence of special cases. The latter serve to indicate which terms of
a general power series representation for the stress functions must be
present for consistency in these several special cases. For example,

consider for a Cartesian rectangular system the following stress functions
for the case of no body forces:

Morera's Stress Functions [43])

&

T = IV (4.1a)
37 al

o o Xy

] 2 (4.1b)
dz I
2

bt S Jl.!é. (4.1¢)
dx dy

g T 2w 3y 9._“_'!.) é.14

y i_‘);( Ts +_3.; + 1z ( )
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X2 % T _3?; + J’f ) e
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Y 3 32 ( Xxl '3; y P il

where *1' wz, and wa are known as Morera's stress functions. For present
Purposes it is not necessary to examine or review the formulation of the

3-d elasticity problem in terms of these stress functions.

Instead, it

suffices to take note of the stress expressions which apply in the follow-

ing three special cases:

Case MO-1: wz-wa-o

% -2,
dy &
; a
= Y,
2;‘ i'%;;r

% 0%
bl dx
a
! 4 Y
’LJ,z:‘I 313’

’rx‘z "‘_i é__&
dx dy (4.2)
a
Tye-44Y
dz 4=
ey 'V
To i’j;é (4.3)
T ).
- 2
xy =-4 1o
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Case MO-3: wl-qu-o

d; = a“"’ T;l e —ﬁ 3“!’3
'ERY dy 32 i (4.4)
L ty

Tt Ty 4 ink

Similarly, consider for the case of no body forces:

Maxwell's Stress Functions [43])

2 a
a; 2 6 x.l ‘ X.,,
b? + 3 (4.5a)
yx s
[ a ‘ X
¢ s o (4.5b)
L 2
0': = bl‘ JM
Ty (4.5¢)
'r’z e oy
dydz (4.54d)

1:; e TE_AA; (4.5e)

e- 4
Ty - (4.5£)
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where Xyr Xpe and X, are known as Maxwell's stress functions. Similarly,
consider the stress expressions which apply in the following three special
cases for the Maxwell stress functions:

Case MA-1: xz-x3-0

2%, 3t 2 x,
% ITh 7 —)Ta- J r’a' iy 3z (4.6)
Case MA-2: xl-xa-o
a 2 a4
=9 Xy =9 X3 _ 9 Xa (4.7
= 3a® 1 "I KU wk
Case MA-3: xl-xz-o
ax alx )‘7,
Q J Ty= e
oy = y g b o 'a_x"' 3 7;;, ‘a_x"a} (4.8)

For the present finite element formulation procedure, one may proceed
in general to assume that each stress component within each layer of the
multilayer element varies in x, y, and z according to some suitably
comprehensive polynomial approximation in terms of unknown stress
parameters B. Also, one may utilize the above special-case conditions
as a check to insure that essential terms in the polynomial expressions
have not been overlooked, or redundant terms are identified and deleted.

A more comprehensive and systematic use of stress-function formulations
could be employed perhaps; however, in the present development, distribu-
tion functions for the various stresses were selected so as to

34




satisfy the basic equilibrium equations, as well as the traction-free
conditions on the edge AB of the TFQE, and certain interlaminar continuity
conditions on the stresses and strains. Subsequently, the resulting
distribution or interpolation functions were examined for consistency as
required by the cited stress-function conditions.

Before discussing the selection of the assumed-stress distributions
further, it is useful to define the geometry and the multilayer features
of the desired finite element: the traction-free edge quadrilateral
element (TFQE) which is depicted in Fig. 6. This flat-plate multilayer
element shall be described with respect to the local Cartesian rectangular
coordinate system x,y,2z for the element with corresponding displacement
u, v, and w; the single traction-free edge is selected for formulation
convenience to be edge AB which is located at y=0. The origin of the
coordinate system is located at corner A at the geometric midplane of
the element. Without loss of generality and for reasons explained better
later, side DE is chosen to be parallel to free-edge AB; also the
indicated plane passing through points C and F on the non-parallel sides
of the element is parallel to the planes passing through AB and DE. The
TFQE is a multilayer element which need not be symmetric and consists
of "many" layers; its total thickness is defined to be 2H. Each layer
is assumed to consist of one or more plies of unidirectional laminate
which is assumed to behave as an orthotropic linear elastic material*;
each layer i may have a different thickness (defined to be Zhi) and a
different in-plane "grain orientation" from all other layers.

Since free-edge effects typically lead to severe interlaminar
stresses and stress gradients at and near a free edge but diminish
rapidly with distance y normal to the free edge, it is important to
represent the stress behavior in considerable detail in each layer of the
multilayer laminate for a substantial region (0.95b) of the element's
width b (A to E', for example) in the y direction. In particular, fine
detail is desired in region ABCF while CDEF will serve as a transition
region with lesser detail -- providing nodal stations D and E which can

L]
A layer may also consist of laid-up plies oriented in sequence such that

the resulting "entire layer" acts as a homogeneous orthotropic ply.
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connect "compatibly" with appropriate multilayer elements of simpler
description. Accordingly, at nodal stations A, B, C, and F:

i i
layer interface i to accommodate the very important warping

behavior and

(a) nodal control displacement u, and v, are employed at every

-

(b) nodal control w displacements are employed at only three
locations through the thickness: top, midsurface, and bottom
-- since the stresses are much less sensitively affected by
the w-displacement variation through the thickness; this also
reduces the number of degrees of freedom and computation
compared with using a "i at each interface.

At each of nodal stations D and E, a total of only five nodal control
generalized displacements are used. These are located at the midplane
nodal points D and E, and consist of u, v, w, Gx(E - %%), and Gy(E %%p:
where Qx and ey are the rotations of the vertical plane along x and y,
respectively. This assumption imposes an artificial constraint on €y the
alleviation of which is discussed later in Subsection 4.5.2.

4.2.2 Stress Conditions to be Satisfied

In each layer of the multilayer laminate, the following equilibrium
equations (in the absence of body forces) must be satisfied:

¥ >y 35 (4.9a)
3Ty 4 3% 4 3Tay
dx 5 dy B “ (4.9b)

3% 4 2 7:’; 3%
x 4 3y M e (4.9¢)
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Also, at each interface i between material layers i and i+l, the folliowing

interlayer continuity conditions must be fulfilled:

] : Y : el . ey :
o2 ao.i‘,‘r“ .'l;. )1;, l‘t;,,w‘k IE‘

(4.10)

where superscripts i+l and i, respectively, represent the material in
layers i+l and i. Finally, at the traction-free edge AB of the TFQE (see

Fig. 6), one must satisfy on the face of every layer:
< £ £ AB at y=0 4.1
o—’ _‘r',‘_r’xgo (face at y=0) ( 1)

Since the stresses in the interior of the element are, in general,
for a loaded laminated structure much greater than those applied externally
to the two surfaces z=+H, the following conditions are imposed at z=+H:

o3 2Ty = 0 (4.12)

x,’
for the purpose of representing the interior stress field by assumed-
stress expressions to evaluate the volume integral term in Eq. 3.1.
However, non-zero externally-applied stresses or tractions on these
surfaces will be taken into account to evaluate QH (Eq. 3.11) from the
last term of Eq. 3.1l. ;

4.2.3 Selected Stress Distributions
As depicted qualitatively for the tension-loaded 4-ply (0/90)s and

(:AS)s coupons in Figs. 1, 2, 3, 4, and 5 -- and quantitatively in

Figs. 8-12, the significant interlaminar stresses at and near the free
edge are 0z and sz. From Fig. 8, for example, it is seen that the
interlaminar oz varies rapidly with y (or y/b) as one proceeds along the
normal from the free edge (along y) to the interior; this general type
of behavior of oz is anticipated for many other "free edge" examples.
Thus, in constructing an assumed stress distribution oz(x,y,z) throughout
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the interior of any given layer, it is apparent that a polynomial of high

degree in y (or y/b) will be required; note that z is the through-the-
thickness coordinate measured from the midsurface of each layer. Since
for many cases 0z is expected to vary more slowly with x and z, polynomials
of lesser powers in these coordinates would be plausible; alternatively, a

e .

finer mesh of finite elements along x could be employed readily if needed.
Thus, a stress distribution which is quartic in y, cubic in 2z, and linear
in x throughout a given layer of the TFQE has been assumed as follows in
terms of unknown stress parameters f:

G(y2) = [LWATGA L A+ A (DA ]

v A - - - - - - - L wA]
*'?[70(’)’%‘ B Folsowi WUk '7.(7)/‘):']
L R 0

sx[B@A - - - - - el eWA]

1
1
'
5
'
t

' 'xi'[",(,)/‘;‘ ¢ - *70(!)'%0]

ofl04 L L L iwA]
u{.’[r,(«,)&' e T T *7.(9/5-] (4.13)

where the following Chebychev [44] polynomials T (y) are used in Eq. 4.13
instead of regular polynomials since numerical tests reveal less roundoff

error when the former are used:
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T(Y) =1

) (%) -1

RG) - e(h) -5 () 40

WD - 1) - w(nfeis () -

@) - :.u(’/;)"- 4“("/5)3.‘ llO[V/‘.)*- 32(4/) +1

(4.14)

oc ¥ <!

where b is the y-direction width of the TFQE as indicated in Fig. 6.
The z origin of each layer is located at the midsurface of that layer.
For the special case of the (0/90)s coupon (Figs. 1 and 3) with a
uniform €_ i sed on each end X220 and 2;51 = 0; hence inte ration
St * Tx i .
of Egs. 4.9b and 4.9c, respectively, with respect to Yy gives

: T
e -j'a_z& dy + fi (x2) (4.15a)

% +
s -f.%;__ “t & (%) (4.15b)

Since at the y=0 free surface, Tyx.ryz.o' and after integration all terms
contain y or powers of y, it follows that

t‘(x‘i) = é‘ (x,Z) =0

(4.16)

Thus, this integration does not add new BR's.

Similarly, the other stress which is significant at and near a free
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edge is sz and its distribution throughout a given layer of TFQE is
assumed to be

*
\
|
|

WA )
ce[twfe s - . - 7.5 /5 |
EhwA o - - - A
+ x 10 A i i 7 A ]

T WA

+

>

ca[lDA « - WA ]
fquiq)/% s = = e C(ilALJ

(4.17)

Note that the distribution function chosen for sz is quartic in y,
quadratic in z, and linear in x. The choice of quadratic rather than
cubic in z (as for oz) was made in an effort to minimize the number of
unknowns introduced without, hopefully, a serious degrading of the
accuracy of this representation; the quadratic z dependence for sz leads
(as will be seen later) to a Txy expression which is linear in z. However,
the sz assumed distribution could have been chosen identical to that
shown for oz in Eq. 4.13 without apparent difficulty.

For the "tension-loaded" 4-ply (+45, -45)s coupon with imposed
uniform ex on each end as depicted in Figs. 1, 4, and 5, one finds that
Oz, (0]

, and sz are present but are negligible compared with Txy and T_ .

b 4 zXx

Accordingly, integrating (equilibrium) Egs. 4.9a and 4.9b with respect

to y gives, respectively:




y -f 5 C‘ x) (4.18a)

’t;‘ - QT,‘; dy 5‘ (X l) “.18‘))

Since at the y=0 free surface Tyx-Ty‘-O, and after integration all terms

contain y or powers of y, it follows that

6J (")2) ‘34 (X,2)= o) (4.19)

Next, note that z integration of the z-direction equilibrium equation
(4.9¢) with the inclusion of Eq. 4.18b gives

4.20
0—-_ = -4 kld.‘_x (X,y) ( )
It should be observed that Eq. 4.20 requires the presence in oz of a
"term" (fs) depending only uwpon x and y; the "fifth" bracket term in

Eq. 4.13 fulfills this need. Thus, no new 's are added after integration.
To this point in the selection of an assumed stress distribution

throughout the interior of any given layer of the TFQE, a plausible poly-
nomial expression for the spatial behavior of the stress Uz has beeh chosen;
Eq. 4.13 involving 40 stress parameters B is the resulting assumed distri-
bution for on(x.y,;). Next, calling upon features observed in the (0/90)'
"coupon problem", the y- and the z-direction force equilibrium equations
(4.9b and 4.9¢) and the free-edge stress boundary conditions on side AB

of the TFQE were used to deduce appropriate distribution expressions for
oy(x,y.;) and ry‘(x.y,;)x Eqs. 4.15a and 4.15b, respectively. Similarly,
a plausible distribution function given by Eq. 4.17 was selected for
T.x(x.y.;) for the TFQE in terms of 30 unknown stress parameters f; then
physical insight from the (+45/-45)’ "coupon problem", in conjunction with
the x~ and y-direction force equilibrium equations (4.9a and 4.9b) and

the free-edge stress boundary conditions on free edge AB of the TFQE, was
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used to deduce an appropropriate distribution function (Eq. 4.18a) for
Tyx(x,y,;) and to assess the implied relations: (1) between sz and Tyz‘

(Eq. 4.18b) and (2) between oz and sz: (Eq. 4.20). The assumed stress

distributions and the resulting expressions just cited are both plausible
and exhibit no apparent inconsistencies. By this convenient but somewhat

circuitous procedure, assumed distribution functions involving a total of
70 unknown stress parameters B for any given layer of the TFQE have been
constructed for the stresses oz' oy, sz, sz, and Txy' Only Ux(x.y,E)
remains to be constructed.

It is convenient to construct an assumed stress distribution function
for ox(x.y,E) in the following way. First note that in general for an
orthotropic (filamentary composite) material whose "filaments" lie in the
X,y plane (not necessarily aligned with either the x or the y axis), the
strain e may be expressed in terms of the stresses c ’ Oy' g z' and Txy

from the stress-strain relations by:

€ = 5, %% + 529y +530u ¢ SuTy (4.21)
where the Sij_are the known compliance coefficients* of the material.
Equation 4.21 can be rearranged to read

Lt o’+Sa'+$T]+.f'_"_. ,
%% 3,"[5“ PR I e vy 5, (4.22)

Note that distribution functions for oy, oz' and Txy have already been
expressed in terms of many unknown stress parameters B. However, an
additional contribution: ex/s11 is present; let this be termed ax where
ox = E:x/s11 Whereas in the Fig. 1 "coupon problems" a uniform € was
imposed over the ends of these specimens, in general €, may have a
significant x,y,z dependence in other more general physical situations.
Hence, the contribution ox in any given layer of the TFQE is assumed to

have the following spatial character:

+'rhe:.e siaocoefficients are defined with respect to the x,y,z element
axes ==

t the material axes of the ply.
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F=gs - [(f, + 1604, 50 Ay + 50 A, + 1 A,]
cx[nwf - 70 ]
X[, + W94
va[T) A, ¢ A0V
2 (fo 2 e 1)

(4.23)

Note that in this form, the special case in which ex is uniform is
accounted for by a single term in Eq. 4.23; namely, To(y)871.

It should also be noted that consistent with the earlier assumed
distribution functions (Egs. 4.13 and 4.17), the terms in square brackets
[ ] in Eq. 4.23 are quartic in y in terms of Chebychev polynomials, with
these bracketed type terms added and multiplied by ;, x, and x2; hence,
these terms are of the same form as certain terms appearing in Eq. 4.13
and Eq. 4.17. However, Eq. 4.23 includes four terms of a type not used
previously; these involve x2: x2891 + xz;B92 + x2y693 + x2y2894. These
four terms were not included in initial studies but were found to be
needed to eliminate kinematic modes. This matter is discussed further
in Subsection 4.6.

Returning attention once more to the special case represented by the
(0/90)' coupon problem, y-direction integration of the x- and the y-
direction force equilibrium equations Eq. 4.9a and Eq. 4.9b, respectively

gives
L ok e e plne) (4.24a)
2 - a‘rl 3
h S“b‘x"‘ d’* 5' (",") (4.24b)
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Applying the conditions oy-Txy-o at the y=0 free edge after integration
of these equaticns yields

b" (x2)- ja (",1) =0 (4.25)

Thus, the assumed stresses have been constructed from basic mechanics
considerations and the required stress boundary conditions. However,
these distributions could also be obtained by using the stress functions
discussed in Subsection 4.2.1. For instance, if Xy (see Eq. 4.6) were

X, =fd#f°2 dé"

and substituting for oz from Eq. 4.13, the resulting expressions for oy
and Tyz would be the same. Other similarities can also be derived for
Egs. 4.4 and 4.8, and the present stress assumptions. However, this
pProcedure alone is awkward because of the traction-free conditions, and
significant terms could be omitted inadvertently. Thus, probably the
best procedure would be to combine the stress-function approach with
physical insight obtained from pertinent examples.

Since the stresses in the TFQE arise not only from mechanical loads
but also from thermal effects, it is necessary to consider the latter
before imposing the interlayer continuity requirements cited in'Eq. 4.10.
Hence, an examination of these thermal-effects terms follows.

4.3 Description of Prescribed Initial Strain

First, note that for an orthotropic ply, the stress-strain relations

may be expressed as
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(4.26)

The elastic compliance coefficients S* are defined with respect to the

material axes £,n,f7 of the ply. H
Let the distribution of temperature change from a reference unstressed

unstrained state at temperature Tr be denoted by TI(x,y,;) for any layer

I of the layered plate. For the element let that temperature change

distribution in any layer I be prescribed and assumed to be approximated

adequately by the following simple expression:

(o) endnx ooy
= -+ 4.27
+z[41“+A ¢ Xt 0% ]J (4.27)

where the z origin is located at the midsurface of layer I, and the
quantities ATl, ATz,-... AT6 are known "fitting" constants used to
describe the TI(x,y,z) prescribed data. However, if the z distribution
of TI is more severe than accommpdated by Eq. 4.27, layer I could be
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subdivided into a number of sublayers'in the z direction, and the

Eq. 4.27-description employed for each sublayer. Since the material axes
(£, n, T) of the material in layer I might not coincide with the axes
x,y,; of the TFQE element, the "element-direction" prescribed thermal

strains s:j may be expressed as (where directions { and z are defined to
coincide):

r E;1 £ » 0
E; » I o
L (]
éz 0 (o] !
E = A = : °<1 TI (x,y,i)
o Jr 0 (0] (7]
0 .cxsj
2ﬂz 0 0 o
b X';J | —Qlu -JA o / (4.26a)
or
§3 EE;TI(X;%Z) (4.26b)

where al, az. and a3 are the coefficients of linear thermal expansion
along material axes £, n, and g, respectively, and £ and m are the

"direction cosines" between the x,y element and the {,n material axes:

L - Cad'(;,-é) me ,&,.(x?,) (4.26c)

Alternatively, to reduce the number of DOF's one could represent T by a
higher-order interpolation function.
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It is useful to recall that with respect to the element axes x, y, z,

the stress-strain relations for any given orthotropic layer of the TFQE
may be expressed as

- - ~—

gx Su Su. Su o o 5," 1 Tx ¥y 8:1
€, § B> §00 0§ % €x
s +
b g ¢ o g0 35 0 {1} e
.[ca.28)
i AZ’J & 21 %; -0 0 %Z ] 1:’J . a&b

or
(4.28a)

where € represents the total strain from the compatible displacement field,

§ represents the matrix of elastic compliance coefficients with respect to

the x,y,z axes of the elementt, g denotes the actual stresses, and e

represents the prescribed (or thermal) strains. Pre-multiplying Eq. 4.28a
-1

by S © and rearranging, one obtains

23" (4.29)

"
—~

where c-s'l could also be written if desired as in Section 2.

.Thclo S coefficients are obtained from the ply 511 values by employing
the proper transformations (see pg. 52 of Ref. 28).
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Since from Eq. 4.26b e°-g":°'rI and from Eq. 4.29 ¢° is defined as
s §°. one may write

=1

Py -l o -l 0 °

ErsE-58%r8 s e
where
r - r - - - — O
T C.E * Cu 8y » CE +C, ¥y 1
-’ c.u E- i Ca £) A €, ¢ C:l X'V
- e C, ﬁx ; ugl i AL X‘U
S = e
7 0
8 0
,T.,J i Ca E‘ + C“ 2, + C“E: + C“ X" g (4.30a)

In the present formulation 5: may be rewritten in a useful alternate form

without loss of generality as
G e ) — — ™
Tuel -3 <Su°'1"5'l°-* *5"?-1> (4.30b)

This form is consistent with the assumed stress °x given by Eq. 4.22.
Hence, the stress quantity denoted by go in Egs. 4.29 and 4.30 and which
is given completely from the known thermal strain Eo may be written in
the following symbolic form:

s Tl /f' (4.31)




Note that the correct total stresses are 0 as defined in Eqs. 4.28, 4.28a,

and 4.29. These total stresses are represented in the present approach by

ls-go on the right-hand side of Eq. 4.29. In turn, the

the two terms S
first term can be regarded as a stress term represented by two parts:

(a) the assumed stress field already selected (i.e., 0, oy, Ogr Ty’ L
and Txy from Eqs. 4.22 and 4.23, 4.15a, 4.13, 4.15b, 4.17, and 4.24a,
respectively) and denoted now collectively by gA and (b) a second stress
field yet to be determined and denoted by EC where subscript "C" may be
interpreted as compensatory since such terms must be devised to accommodate

the following requirements:
(1) equilibrium of each layer of the TFQE,

(2) the traction free conditions in every layer on face AB
where y=0,

(3) the interlayer continuity requirements as indicated in
Eq. 4.10, and '

(4) the stress-free conditions on the two surfaces z=+H of
the multilayer element (Fig. 6).

Thus, with this interpretation, one may "rewrite" Eq. 4.29 as

é (4.32)
O z0, ¢ - :
i i T
where
%a = EB = the already-selected assumed stress field
% 8 gcgc = compensatory stress. field for the known gos

gc is to be determined

"stress field"” known from the prescribed

e
"
]

P B

~0~0
thermal strains

In the present subsection, only a portion of 0  is discussed -- that

associated with requirements (1) and (2) -- and denoted as OCA; the

remainder, gCB’ arising from satisfying items (3) and (4) is discussed
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in Subsection 4.4. Hence, for reference convenience, one may write

s (4.33)
Lc "%tz

In computing Oca’ each term in go is considered séparately for
convenience. Also, in satisfying equilibrium, the stresses are combined
exactly as discussed in Subsection 4.2.3. The stress o: can be written
from Eqs. 4.26, 4.30b, and 4.31 as

o= & [A‘]; *AT.\" +A§7 +‘i(ATb+ATSX+AT‘7)) (4.34)

Satisfying the equilibrium Eq. 4.9a, one obtains the shear stress as

(T), -2 &

. a-—:(AU + AT, 72)

(4.35)

which satisfies the traction-free condition at y=0. Note that since 0:
is expressed in terms of other stresses (Eq. 4.30b),

(nlf _—55-'-‘-[ (T"#)cn] . i

Next, the stress o; can be written from Eqs. 4.27, 4.30a, and 4.31 as

o"' aa—-"[AT' +A7;X+A'§’ + (4.37)

7(AT +ATx +AT7)]

Satisfying traction-free conditions at y=0 yields
o3) s oy [AT +8Tx+Z (AT + AT X)]
( 1)“ i | ' WXtz (A% s
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satisfying equilibrium (Eq. 4.9b), the resulting shear term

(7’/"3)“ ; ;U.[A-,;x'*AT‘ Xi]

from o; in Eq. 4.33 are

(a-,)c; ?y [ AT + AT, x + ATs y
‘ 2 (87, + AT+ AT y)]

and

(%ea = 4182 ()]

Next, the stress o: can be written as

oy =7 [aT+O0Txr ATy

+ E(AK+A'§,X+A7;7)]

Satisfying equilibrium (Eq. 4.9c) yields
CORNE
CA )=

=°7_z°[AT"31AT; xU+AT‘ 7/: ]

which satisfies Eq. 4.11 at y=0.

However, the remaining terms in y also have to be eliminated because in

violates traction-free conditions. Thus, the compensating terms arising

(4.38a)

(4.38b)

(4.39)

(4.40)




mm""'u e —

The stresses T;g and 't:":z are zero; hence, finally one obtains

T"? 4 T"I[ AT, + AT x +AT37 (4.41)

+2 (A7, + AT, x +AT, 7)]
The compensating term required to satisfy traction-free conditions is

e AT +OTx +Z (AT + AT x
(’Zi,)“ ’ 2 T8

(4.42)

Also for equilibrium, one obtains from Eq. 4.9a

‘t:] ’f E’ d —f 3 T‘l 53
( )C" 0y : ‘g_,_L)C” o (4.43)
Tylorz rar 2]
Also from Eq. 4.30b,
(30 <4 [ (Ty), ] £

Thus, all terms in gCA have been computed. Combining the terms, one can
summarize and write these gCA terms as

(°;>CA =‘$L,,[Sm ®y *Suc-x ¢ 5,‘7;:16‘

(4.45)
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Cc}")cn =fM d’

dz

(T;‘)cn i[%’ dz —fb(%)“ dz

(4.45

(T:V>c. =f%o;;—' dy+ﬁ’y[ATl+A'§x+i(AT.+AT;x)] Cont.)

4.4 Interlayer Continuity and the Remaining Free-Surface Conditions

To this point, the total stresses 0 in any given layer of the multi-
layer finite element have been described as consisting of:
o
L CatihntTws - (4.46)

where all of the contributions on the right-hand side of Eq. 4.46 have

been defined except for o (called part B of the compensatory stress

contribution). This finachontribution can be determined by satisfying
the interlayer continuity conditions and the stress-free conditions of
the surfaces at z=+H. It should be recalled that gA for any given layer
was constructed in terms of unknown coefficients so as to satisfy (i) the
force equilibrium equations in that layer and (ii) the stress-free condi-
tions on side AB of the TFQE. Hence, since go is prescribed, gCA was
chosen to compensate for the "violations" of (a) equilibrium within a
given layer and (b) the stress-free state on edge AB of the TFQE.

Next, therefore, consider the construction of the proper 9cs such
that all of the aforementioned conditions remain fulfilled while satisfy-
ing: (a) the interlayer continuity condition at interface i given by

Eq. 4.10 (and repeated and clarified here for convenience):
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( O;i"z.-t 2 (o;‘ )"e‘ : (r"‘i“)d.-" y (T,i. ), N

(4.10)
( z;"-)&i,, : (Tz’)l 4; ;(g‘:" )-'&",, . (g: ):"c'

which must be satisfied at all x,y locations on the interface, where the

ith interface is bounded by material layers i and i+l (of respective thick-

nesses 2hi and 2hi+l) and (b) the stress-free conditions (Eq. 4.12) on

the two faces located at z=+H:

o; :Tza s tn- « O (4.12)

Now these conditions will be satisfied exactly for the TFQE by selecting

OCB such that the actual stress O given by Eq. 4.46 will be guaranteed

to satisfy all of the aforementioned requirements. However, this 9cn

construction process may be described most clearly perhaps by examining
a few illustrative terms.
Consider, for example, the interface continuity condition on

oz(x,y,z) as defined by the following description:

A ca cs o\*?!
o: "t +03°%- o0y )_
( b . » y Ze-Riy

-
-

A CcA cs o\ (4.47)
- 03 -
(0‘1 z t% a;)i"“

One need not add explicitly the contributions OSB in layers i and i+l;
instead relations of this type supply a set of required conditions which
can serve to eliminate a number of the unknown B's already present,
thereby reducing the number of unknowns to be handled finally. That is,
the eliminated B's will be functions of other B's and the prescribed

stresses co and 0. the latter part will constitute g Also, it should

CA
L]

Strictly speaking, the variational principal employed does not require
one to satisfy this physically present strain continuity condition; how-
ever, its use in the TFQE formulation reduces the number of unknown B's
without, hopefully, unduly degrading the performance of the element.
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. be recalled that Tyz was constructed from the Eq. 4.13 assumed function

for oz through the use of Eq. 4.15b; hence Tyz is expressed in terms of
many of the same B's that appear in Eq. 4.13. In this B-elimination
spirit, the pertinent equations satisfying Eq. 4.10 will be illustrated
for one typical term taken from one of the following 10 different sets
of terms which can be identified in Eq. 4.13:

Term Set Associated B's Present Associated Ti(y)
3 L To¥)
: Bay Pyg By By ToM)
3 Lokt el e T T, ()
“ Baa By By By T
5 B; B B3 Byg T,
< Bas Bag B3z Byg T,
i By By By By T3
s Baa By B3q By T30
i Bs B0 Bis By Taly)

i Bas B30 Bas By TaY)

The continuity conditions are to be satisfied exactly term by term..

Therefore consider, for example, set 2 which reads for the ith layer:

(OZA)L " "To(?) [/Af:/ + i/é‘ * —‘i:'/@ + .%-J “J (4.48)

s
Also, from Eq. 4.39, the corresponding type of term in 0: reads

—0 e (4.49)
- x & [aT+207)

55

B e o - " : . : - . 3 ». . AR e RS Do i e A S




Collecting,

(oz); = (52", +(="), +(o3');

- 2 =3
= x 7;(7)[/4:* 2Lt /% /5% i2 505

-5y (a1, +2 at,)]

Hence, from Eq. 4.45, GEA-O.

For the terms (a‘z‘)i given by Eq. 4.50, Eq. 4.15b may be used to

evaluate the associated (Tyz)i:

(T ); - _J”_aa_i (72): oy
gl ar Ae A ]

5"\-"&"_‘_2;‘;“"

where 2hi is the thickness of the ith layer.

(4.51)

Next, let Eq. 4.50 be used to write for "set 2" the 0z continuity
condition at interface i where z = -h;,, in material layer i+l and z = +h
in material layer i:

(d;m)s 3 a:.' ) (4.52)
SGti a-‘. xa il 9"

(3 3

i
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or

[A"‘”' bin /‘g-t:“*i.‘:l /J'i“‘ “' /g‘ -z AT -4, AT‘“)]
’[/?';* l‘./f"‘ 3 f.i;/é' *5::/4"6;‘;(“;;*‘: AT;)} (4.52a)

Rearranging Eq. 4.52a, one obtains

/821‘ + 4, /4:*' :‘-}2 7 -J-f:— u‘
. /4'(41 5 /8‘ :f;u_ /g '[u_ gr‘; /83:*'

¢ . iy (4:52b)
+";'(A1;'+£‘.AT -5 (AT -4, AT )

Similarly, writing continuity of Tyz at interface i for the present set-2

term gives

! ‘
Set &('Z;,; Ze-k,, St 4(71‘ )1.,4. (4.53)

(1)

or
(ot

(44, A 424, -
: [/3“;* 1‘-/4,‘.&!;/4‘_ a_?:"'AT:]

i+ ubl
-5 :
it s'

(4.53a)
Rearranging Eq. 4.53a, one obtains
‘ ‘ & ‘vt 4 m
A ~ /§
/€‘+ . "’*‘é“& = fu ~ m T “I
. MaT (4.54
+°; A’;— -0 s i
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One can also write for these "set-2" terms the continuity conditions at
interface i-1 to obtain another equation each similar to Eq. 4.52b and to
Eq. 4.54. Therefore, one has four equations from which one can solve for
e b
terms ; thereby, one can eliminate B 1’ B 26" B and B 6° Note that if
the ith interface is traction-free (i e., z-H), then the B' g+ in Egs.
4.52b and 4.54 are zero, but the B' s are eliminated as before. Also,

and B in terms of the remaining B's and the "known thermal

if the total number of layers is even (Fig. 13) only traction-free
conditions need to be satisfied at z=H for the last layer. Hence, in
this case only B;l and B;G are eliminated.

Similar to oz' the interlaminar shear stress sz (Eq. 4.17) can also
be separated into 10 different sets of terms:

Term Set Associated B's Present Associated Ti(y)
: Bar. B Bar To¥)
2 fggiRgy - By Tol¥)
’ Baa By Bs Tw
b Bs; Pe2 Bgy T
’ Bas  Bag  Bs3 T (1)
6 Bsg  Bes  Beg Ty (y)
! Baa  Bao  Bsq T3
s Bso  Bea  Beo T3y
y Bes  Pgo By Ta)

0 Bso Bes  Bao Ty

In any layer i, to satisfy traction continuity at both interfaces, two
B's are eliminated from each set.

~ Finally, in satisfying ex continuity, Eq. 4.23 is divided into 12
| sets of terms:
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Term Set Associated B's Present Associated Function of y

3 Ba1 Bae To¥)
2 Be1 Bae To¥)
3 B2 B2 Ty ()
4 Bga Bga W
- B3 Brs T, |
6 Bg3 Bgs T,(y)
! Bra B9 T3
8 Baa Bao T,4(y) i
- Bs Bso T4 |
59 Bgs Bao T4)
B 81 B92 G
i Bos Bog =

In any intermediate layer (e.g. layer 3 in Fig. 13), both B's are
elimihated-to satisfy ex continuity at both interfaces. However, at
layer 1 (and layer 5 when NL=5), only one B is eliminated since continuity
is required only at interface 1 (and interface 4 for NL=S).

Thus, many of the layer 8's are eliminated to satisfy continuity and
traction-free conditions. A laminate with NL layers, initially has 94 B's
per layer; hence, for the entire TFQE:

Total Betas = 94 NL (4.55)

At each interface there are 3 traction continuity constraints (Eq. 4.10)
and since there are 10 different sets of terms for each stress, 30 B's

are eliminated. For NL-1 interfaces:

Number of Betas Eliminate

from Traction Continuity = 30 (NL~1)

Conditions (4.56)
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Also with 3 traction-free conditions at the two surfaces z=+H, one
eliminates for the 10 sets

Number of Betas Eliminated
(Traction-Free Conditions)

} = 30(2) = §0

(4.57)

Finally, for ex continuity at each interface, 12 B's are eliminated from

the 12 sets of terms.

Number of Betas Eliminated

(ex Continuity)

} = 12 (NL-1)

(4.58)

The total number of B's eliminated are obtained by summing Eqs. 4.56,

4.57, and 4.58:

Total Betas Eliminated

= 42NL+18

(4.59)

Thus, after satisfying Egs. 4.10 and 4.12, the independent B's left are
(Eq. 4.55 minus Eq. 4.59)

Ng

94NL - (42NL+18)

= 52NL-18

(4.60)

For convenience, these B eliminations are summarized in the following

tabulation:

. At Each Surface or Interface No. of Total
Constraint No. of | Total per | Surfaces Number
Condition No. of Term | Surface or or of

cOnditionq Sets Interface Interfaces | Conditions
Traction Continuity
at Each Interface 3 10 30 NL-1 30(NL-1)
Traction Free
Conditions at Two
Surfaces: z=+H 3 10 30 2 60
€_ Continuity at
ach Interface 1l 12 12 NL-1 12(NL-1)

Total Number of Conditions or B's Eliminated:

42 (NL-1) +60

Erlaining B's: 94NL - [42(NL-1)+60] = 52NL-18

60
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The B elimination is done in alternate layers and this is shown in
Fig. 13. This procedure allows the eliminated B coefficients to be
dependent upon only the adjacent-layer coefficients. This reduces the
band-width of the H-matrix (Eq. 3.6) because if coefficients are eliminated
i in every layer, the H-matrix will become fully populated. ‘The savings in
‘ : computer storage by "alternate-layer elimination" becomes significant with

an increase in the number of layers. For a four-layer laminate (NL=4,

NB=190) for example, the H-matrix requires 16,417 words; the saving in

storage space compared with the full population scheme is 9%. However, if

NL=8(NB=398), the storage required is 46,989 words, and the saving is 4l%.
Thus, B elimination in alternate layers significantly reduces the storage

space required for the H-matrix. The maximum bandwidth of H is 197.

4.5 Assumed Displacement Field

4.5.1 Selection Guidelines

Of principal interest in the present study are multilayer (composite
laminated) plates which can be characterized as ranging from thin to

moderately thick (roughly §~> 4 using the nomenclature of Fig. 1). Since

information of "fine detail" is needed in a region near a traction-free
edge where (a) interlaminar stresses of significant magnitude and rapid
variation can occur and (b) pronounced warping displacements can appear,
the nodal control inplane displacements ui and vi are included at each
layer interface at "free-edge" nodal stations A and B as well as at nodal
stations C and F on the non-parallel sides of the TFQE as depicted in

Fig. 6. These significant and rapidly varying stresses are confined roughly
to a "boundary layer" region between the free edge (y=0) and along the y
direction of about one laminate thickness 2H in extent; hence, consider-
able detail is needed in this region (ABCF) of the TFQE. In this important
"free-edge effects region" ABCF of the TFQE, a lesser level of detail is

needed for the w-displacement behavior since the interlaminar stresses are
less sensitively affected by the variation through the thickness of the
w displacement; accordingly, at nodal stations A,B,C, and F of the TFQE,

control w-displacements are selected at the geometric midsurface as wM, at
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the bottom as wp, and at the top surface as wT. where respectively, z=0,
z=-H, and z=+H.

Since it is intended that the TFQE be attached at nodal stations D
and E (side DE) to another multilayer finite element of simpler but
appropriate description such as MIP3K of Ref. 26, regibn CDEF of the TFQE
is a transition region with a total of only 5 nodal control degrees of
freedom defined at the z=0 location at node D by uD, vD, wD, 63, and
6: -- and similarly at node E. Next, it should be recalled that the
Modified Principle of Complementary Energy, Eq. 3.1, upon which the
present TFQE hybrid finite element is based requires for static loading
problems assumed-displacement information only along the boundaries of
the element. However, for dynamic response problems one must account
for the inertia forces throughout the volume of the element; for this
purpose, the variational statement given by Eq. 3.34 will be utilized.

Accordingly, the selections of the assumed displacements along the
boundaries and in the interior of the TFQE are discussed in Subsections
4.5.2 and 4.5.3, respectively.

4.5.2 Boundary Displacements
As noted earlier, assumed displacement distributions are needed for
the edge-boundary regions BC, CD, DE, EF, and FA (see Fig. 6). Along

each of these regions the displacements u, v, and w are each assumed to

vary linearly. For each (ith) layer u and v are defined in terms of
(1) a coordinate z measured from the midthickness of the ith layer (which

is of thickness Zhi) and (2) a normalized boundary coordinate s defined
such that 0<s<1.

Accordingly in the ith layer, ul(s,;) from station B to C is assumed
to be

“(62) (o5t &) u (- E)en o,

. . (4.61)
+(o 5+ -’i;) su+(os-%)s u
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Similarly, vi(s,E) from B to C is assumed to be given by an expression

3 = e
like Eq. 4.61 with u;+1 and n; replaced by v; A and v:. and ué+l and ué
replaced by vé+1 and vé. Also, similar expressions apply for ui(s,i)

and vl(s,;) from F to A, where one simply replaces nodal interface
quantities having subscript B by F and C by A. Next, along BC the
quadratic w-displacement through the thickness at each nodal station is

assumed in turn to vary linearly from B to C as follows:

W(sz) = (1-5) w(2)+s % (2) (4.62)

where
7 3 M
wf) =4 (1+ %) 2 v+ (-50)
(4.62a)
(j/ E:) -
H
e z ¥ A‘) ¥
AORSTE )L Bt G DR

4.62b)
Vi) A (

N~
z|N
>

and z is measured from the midplane of the entire multilayer configuration
(see Fig. 6). From F to A, wi(s,z) is given by expressions like Egs. 4.62,
4.62a, and 4.62b except that subscript B is replaced by F and C by A.
This completes the assumed boundary displacement descriptions along
bour “ary segments BC and FA.

Next, consider segments CD and EF. For the ith layer ui(s,;,z) for

segment CD is assumed to be

ui(s,I,z) =(o.5+%)(l-.§) ug' +(o.5—%)(l-s) uc‘
(4.63)
S u *539’
+S u )

where s the normalized boundary coordinate from C to D (or E to F) such

that 0<s<l. For vi(s,E,z), a similar expression applies with all u's
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replaced by v's and 9 replaced by -9 Similarly from E to F, an

expression like Eq. 4 63 is used (for ui(x,z,z) and for v (s,z,2)) where
label C is replaced by E and D by F. Finally, the w (s,z) from C to D

is assumed to be

w‘(s,z) = (/-s) wc(z) +5 wj(z) %

where

“_’b(z)a (vp +-f( 5":_—’)6 dz s

Note that since only 5 control degrees of freedom are used at node D, it
is implied that ez-o at D (and in fact all along side DE); since the TFQE
is a "three-dimensional" element, the stresses are very sensitive to this
constraint and behave erratically if not "alleviated". Hence, it has

been assumed that & is a constant from C to D (and from E to F) with the

dz S B
value taken to be the —— computed at station C: (Ti;) e (or at station F:

dz

(%:-)F when considering wE(z)) . This assumption is valid if (1) C (or F)
is at least a distance of 2H away from the traction-free edge AB and ,
(2) the distance CD (or EF) is small -- in which cases these interlaminar
stresses in this region become negligible.

Finally, along side DE, ul(s,z) is assumed to vary linearly with s
from D to E as follows:

u‘(s 2)=(i-s) uy+ 5 u +(1-s)z o) +526, e
£ ? (3 Yy Y

For vi(s,z) one uses an assumption similar to Eq. 4.65 where the u's are

replaced by v's and 95 is replaced by -Gi. Also,

u,-(s z)=(r- ) w (z) +5 w (z) kil
‘ where w (z) is given by Eq. 4.64a and wp (2) by
z : d
k) "'t'f(f);d" (4.66a)
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As pointed out earlier, the element has two restrictions on its
geometry, without loss of generality: vertical planes through DE and CF
must be parallel to the traction-free edge AB. These restrictions have
been imposed since (a) otherwise, difficulties may arise because of
element distortion effects and (b) the stresses in this region are essen-
tially linear in x.

Collecting terms from Egs. 4.61 to 4.66, the boundary displacements
of the TFQE can be written in the matrix form of Eq. 3.4 as

“'.'...L.. Y (3.4)

—

The terms q in Eq. 3.4 represent the nodal degrees of freedom such as
i+l, v;+1, w: etc., and the matrix E is the interpolation function of
q along the element boundary.
Finally, note that along traction-free edge AB, no displacement
variations need be assumed since the surface tractions are zero, and the

integral in Eg. 3.7 vanishes on this edge.

4.5.3 Interior Displacements

In order to account for the inertia forces throughout the interior
of the TFQE for dynamic analysis purposes, an internal assumed displace-
ment field is needed ~- to be used in conjunction with Eq. 3.34 for "DMC'

For present purposes the internal displacement field u for the' TFQE
is constructed in two parts. Part 1 consists of ABCF, and part 2 is CDEF.
In each part the nodal degrees of freedom at each node are interpolated
bilinearly to provide an estimate of the interior displacements. The
displacement field is thereby compatible across face CF.

First, consider region ABCF. At any given node, the displacements
u, v, and w are functions of z and z as given by Egs. 4.61 to 4.66 and/or
equations of those forms. For example, at node B one may obtain uB(z) in
the ith layer from Eq. 4.61 by setting s=0 thereby obtaining:

u.; (‘i) s (o.: +-i'.) u:' r(o!--}“) u;

(4.67)
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where u:+1 and u: serve as two of the 2(NL+1)+3 generalized nodal displace-
ment 9 where NL is the number of layers and

t ¢ 2 2 33 Nevl  puvr @ " fjr

?‘-u»uvuv......-u > w "“' (4.68)

Similar generalized displacements apply at nodes A, C, and F. One may
obtain v;(;) :nf wB(:) similarly. Next, the nodal values at nodes A, B,
C, and F of uA(z), vA(z), and wh(z) at node A, for example, are used as
control values for bilinear interpolation in terms of two normalized
coordinates £ and n defined such that (§,n) = (0,0) for A, (1,0) for B,
(1,1) for C, and (0,1) for F. Accordingly, the bilinear interpolation
functions to be applied to the nodal functions of z and z at nodes A, B,

C, and F, respectively are:
N (s2) <(-8)(-v)
n(se) -(-2)s
A‘l;(g) ?)-32 (4.69')

N (5, %) < (-8)e
Thus, one can write the element x,y coordinates in terms of the coordi-

nates £ and n by the following relations [30]:

x=x, N (5,2)rxm(5,0) (3D XN (52) (4.70)

AR OVRNAIRTACOERACLY

Hence, for example, one may express u(x,y,z) or u(E,n,;) in the interior

of region ABCF by
“@z !,f)‘ “n(’)’% O LA ‘%ﬁ)%* U (2N (4.71)
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